Knee Realignment with Osteotomy

S. Robert Rozbruch, MD

Chief, Limb Lengthening & Complex Reconstruction Service Professor of Orthopedic Surgery Weill Cornell Medical College

HSS educational activities are carried out in a manner that serves the educational component of our Mission. As faculty we are committed to providing transparency in any relevant external relationships prior to giving an academic presentation. S. Robert Rozbruch, MD HSS

Disclosure:

I do have a relevant financial relationship and will be discussing products/services of the commercial interests with which relationships exist: Consultant for Smith and Nephew Inc. Consultant and Royalties, Small Bone Innovations inc.

Realignment Osteotomy

End Distraction

3 months

102

3.5 months

Rationale for Re-alignment Normal Force Transmission

- 70% of force is on medial side in single leg stance
 - Adductor moment during gait
- With 4⁰-6⁰ varus this increases to 90%
- (rigid body spring model)
- Hsu et al 1990

Source of MAD

Goal for realignment

 Most studies suggest overcorrection is desirable and correlates with better results

- Fujisawa point
- Femorotibial angle 10 degrees valgus
- Yasuda et al 1992,
- Coventry et al, 1979
- Fujisawa, 1979

Goal for realignment

Fujisawa et al, 1979

- Point 1/3 of way on lateral plateau
 Jakob & Murphy 1992
- Modified point depending on level of degeneration
 Anatomic angle goal is limiting

Moonta et al: to be published in..... J of Computer Methods in Biomechanics and Biomedical Engineering 2014

Reisse et al: Virtual osteotomies. Hillistrom lab 2014

Pressure in the medial and lateral compatment

25 y/o, bilat. Knee pain

0

1 2

This should last until forever !?!?

45 y/o active guy with tibial and some joint convergence

2 level deformity 50 year old, active soccer player

ENBLA

CLINICAL RESEARCH

Does the Taylor Spatial Frame Accurately Correct Tibial Deformities?

S. Robert Rozbruch MD, Kira Segal BA, Svetlana Ilizarov MD, Austin T. Fragomen MD, Gabriel Ilizarov MD

Received: 23 March 2009/Accepted: 27 October 2009/Published online: 13 November 2009 © The Association of Bone and Joint Surgeons® 2009

Abstract

Background Optimal leg alignment is the goal of tibial osteotomy. The Taylor Spatial Frame (TSF) and the Ilizarov method enable gradual realignment of angulation and translation in the coronal, sagittal, and axial planes, therefore, the term six-axis correction.

Questions/purposes We asked whether this approach would allow precise correction of tibial deformities.

Methods We retrospectively reviewed 102 patients (122 tibiae) with tibial deformities treated with percutaneous osteotomy and gradual correction with the TSF. The proximal osteotomy group was subdivided into two sub-

with a varus deformity and from 96° to 85° in patients with a valgus deformity. In the middle osteotomy group, all patients had less than 5° coronal plane deformity and 15 of 17 patients had less that 5° sagittal plane deformity. In the distal osteotomy group, the lateral distal tibial angle improved from 77° to 86° in patients with a valgus deformity and from 101° to 90° for patients with a varus deformity.

Conclusions Gradual correction of all tibial deformities with the TSF was accurate and with few complications. Level of Evidence Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels.

Preoperative vs. Postoperative MAD: Proximal Group (mm)

	Preop MAD	Postop Goal 0		Postop Goal Overcorrection	
		Medial	Lateral	Medial	Lateral
MAD Medial	39	5	5	_	8
P value		< 0.001	0.03		0.004
MAD Lateral	33	8	3	12	_
P value		0.01	0.05	0.1	

Rozbruch et al.: TSF for Tibial Deformity Correction; CORR 2009

Flexion contracture

Osteotomy

- Extend at osteotomy site
- Uni-knee
 - Remove
 osteophytes and
 will gradually
 regain flexion

Protocol

• EBI monolateral frame

■ Varus deformities less than 10 degrees.

TSF frame

Deformities greater than 10 degrees, or associated sagittal and/or axial plane deformities.

Ashfaq K, Fragomen AT, Nguyen JT, Rozbruch SR: Correction of proximal Tibia Varus with External Fixation. J Knee Surgery 2012, 25(5):375-384.

Patients	Limbs	TSF	EBI Frame
72	93	57	36

Patients were subdivided into two groups:

■ **Neutral** (MAD goal of 0 mm).

Overcorrected (MAD goal 10 mm lateral)

Preoperative vs Postoperative MAD (EBI)

	Preop MAD	Postop Goal (Neutral)		Postop Goal (Overcorrection)	
	(mm)	Medial	Lateral	Medial	Lateral
Average	21	3	5	5	10
Range	10-44	0-12	2-10	-	4-20
N =	36	15	8	1	12

TSF deformity parameters

	Varus	Apex Anterior	Apex Posterior	Internal Rotation	External Rotation
Avg	13 (4-46)	10 (2-30)	8 (5-15)	16 (10-40)	15 (7-25)
	N= 57	19	8	9	16

Preoperative vs Postoperative MAD (TSF)

	Preop MAD	Postop Goal (Neutral)		Postop Goal (Overcorrection)	
		Medial	Lateral	Medial	Lateral
Avg	<mark>39</mark> (10-75)	4 (0-30)	5 (2-8)	* 35	11(3-18)
N=	(57)	(23)	(6)	(1)	(27)

Results

There was no significant change in ankle or knee range of motion.

There was one complication which was a collapse.

Discussion

Our treatment algorithm of treating proximal tibial varus deformities of less than 10 degrees with EBI monolateral frames and more than 10 degrees alone or in

association with any of the sagittal or axial plane deformity with TSF frame is safe and highly effective.

24 deg deformity

8 deg femur 8 deg joint 8 deg tibia

Osteotomy or TKR

Ligamentous Insufficiency

ACL Insufficiency
Decrease posterior slope
PCL Insufficiency
Increase posterior slope
LCL Laxity
Correct varus
MCL laxity
Correct valgus

Fig 11-5 Tension of the ACL (measuring sensor in the anteromedial bundle) in relation to the tibial slope. A measurable increase in tension was only recorded at a slope increase of more than 10°.

Fig 11-3 AP translation of the proximal tibla after transection of the posterior cruciate ligament (PCL). The posterior translation (negative values) was already neutralized at an increase of the tibial slope of 5° and was even inverted into anterior translation with further slope inclination.

35 year old, femur + tibial deformity, LCL laxity, LLD, ACL laxity

65 year old , femur deformity, some joint convergence

25 y/o, valgus, knee pain, lat compt DJD on scope, femur +tibia

46 y/o, bilat, medial knee pain Uni done 1 yr ago

Pain resolved; uni was poor choice

25 year old: This should last forever too!!!!???????

W.H.Auden, Poet 1907-1973

• "Healing is not science but the intuitive art of wooing nature" Osteotomy is more like gardening than carpentry

Realignment osteotomy

Alternative to arthroplasty
 Prevent arthrosis when done early

In presence of arthrosis

- Improve pain
- Delay progression
- Make arthroplasty easier in many cases

Severe arthrosis

Improve pain , gait, balance

Future of joint reconstruction and joint preservation

Biological solutions
 Mechanical principles
 "You can't cheat the laws of

 "You can't cheat the laws of physics"

Knee distractionImproved biologics

- Stem cells
- Growth hormone
- Cartilage growth factors
Thank You

www.hss.edu/limblengthening